06.04.2017, 18:21 (This post was last modified: 06.04.2017, 18:39 by buuuudzik.)
Thanks Erwin,
but I know about this API and I am using it, but it is very low-level and e.g. it hasn't timestamp only some values which are from start to end and also I've tested that fetch is not working properly when you try to get the data from some range and also fetchone has some bugs or isn't accomplished like library from old-trends.
The other problem with current version of trendAPI which I've found is that when I want check only data from monday 12:00 to tuesday 7:00 I must download full monday and tuesday and doing whole calculation on not small table in Lua. And also when I want try something like this(fetching only a part of day):
Code:
require('trends')
name = 'Słońce_Azymut'
dates = {}
dates['start'] = { year = 2017, month = 4, day = 6, hour=7}
dates['end'] = { year = 2017, month = 4, day = 6, hour=12}
-- resolution (in seconds) is optional
-- default trend resolution is used when not set
resolution = 3600 -- hourly data
res, a, b = trends.fetch(name, dates, resolution)
log(res)
The result is empty table A working way is when I download data from day=6 to day=7 and then I must do whole job in Lua.
For me it would be perfect if I can analyse freely and reliably data from trends, so I can check freely every trend and find e.g. yearly maximum or how much time object crossed the limit and exactly when etc..
Perfect would be if this would be like in SQL because for me this is the best way for such analysis
I think also good option would be a tool for convert rrd db to SQL(but this I can do by converting whole data from TrendAPI, try to add to this data some timestamp and save it in .csv and then import such table to DB Browser)
06.04.2017, 22:00 (This post was last modified: 06.04.2017, 22:48 by Erwin van der Zwart.)
Hi Buuudzik,
Unfortunately that option is not available, but you can easily create simulair result including timestamp by using this:
Code:
require('trends')
name = 'Słońce_Azymut'
dates = {}
dates['start'] = { year = 2017, month = 4, day = 6}
dates['end'] = { year = 2017, month = 4, day = 7}
-- default trend resolution is used when not set
resolution = 3600 -- hourly data
res, a, b = trends.fetch(name, dates, resolution)
-- Create new table with timestamp and only values between 7 and 13
newtable = {}
for i, row in ipairs(res) do
if (i-1) >= 7 and (i-1) <= 13 then
table.insert(newtable, {time = (i-1) .. ':00', value = row})
end
end
log(newtable)
If you resolution is 5 minutes you can convert it to hourly data like this:
Code:
require('trends')
name = 'Słońce_Azymut'
dates = {}
dates['start'] = { year = 2017, month = 4, day = 6}
dates['end'] = { year = 2017, month = 4, day = 7}
-- default trend resolution is used when not set
resolution = 3600 -- hourly data
res, a, b = trends.fetch(name, dates, resolution)
newtable = {}
if #res == 288 then
counter = 0
total = 0
for i, row in ipairs(res) do
total = total + row
counter = counter + 1
if counter == 12 then
if ((i/12)-1) >= 7 and ((i/12)-1) <= 13 then
table.insert(newtable, {time = ((i/12)-1) .. ':00', value = (total/12)})
end
counter = 0
end
end
end
log(newtable)
If you resolution is 10 minutes change 288 to 144 and all 12 to 6 , for 15 minutes resolution change 288 to 96 and all 12 to 4, for 20 minutes resolution change 288 to 72 and all 12 to 3, for 30 minutes resolution change 288 to 48 and all 12 to 2.
if (t0_isdst ~= t1_isdst) then
if (t1_isdst) then
-- change to summertime
return 1
else
-- change to wintertime
return 2
end
else
return false
end
end
-- Convert word "now" in "start" to data table
if type(dates['start']) == "string" then
if dates['start'] == "now" then dates['start'] = os.date("*t", os.time())
elseif dates['start'] == "yesterday" then dates['start'] = os.date("*t", os.time()-24*3600)
elseif dates['start'] == "week_ago" then dates['start'] = os.date("*t", os.time()-7*24*3600)
elseif dates['start'] == "month_ago" then dates['start'] = os.date("*t", os.time()-30*24*3600)
elseif dates['start'] == "year_ago" then dates['start'] = os.date("*t", os.time()-365*24*3600)
end
end
-- Convert word "now" in "end" to data table
if type(dates['end']) == "string" then
if dates['end'] == "now" then dates['end'] = os.date("*t", os.time())
elseif dates['end'] == "yesterday" then dates['end'] = os.date("*t", os.time()-24*3600)
elseif dates['end'] == "week_ago" then dates['end'] = os.date("*t", os.time()-7*24*3600)
elseif dates['end'] == "month_ago" then dates['end'] = os.date("*t", os.time()-30*24*3600)
elseif dates['end'] == "year_ago" then dates['end'] = os.date("*t", os.time()-365*24*3600)
end
end
-- Start and end in unix time
starttime = os.time(dates['start'])
endtime = os.time(dates['end'])
-- Invert "start" and "end" when "end" is smaller than "start"
if starttime > endtime then
_ = dates['start']
dates['start'] = dates['end']
dates['end'] = _
end
-- Read trend resolution from DB
resolution = db:getlist("SELECT resolution*60 FROM trends WHERE name='" .. name .. "'")[1]
-- Prepare a table with the data which include the whole data from specified range
if resolution then
-- Expand a range with a one more day if there is some data in the last day
if (os.date("%H", endtime)*3600 + os.date("%M", endtime)*60) >= resolution then
dates['end'].day = dates['end'].day + 1
raw_data = trends.fetch(name, dates, resolution)
else
raw_data = trends.fetch(name, dates, resolution)
end
start = 1
data = {}
start_timestamp = os.time(dates['start']) + resolution
-- Cut the data and prepare a table with the data only from specified range
offset = 0
skip = 0
k = 1
while k <= #raw_data do
v = raw_data[k]
if k == 1 then last_timestamp = start_timestamp else last_timestamp = current_timestamp end
current_timestamp = start_timestamp + (k-1) * resolution + offset
timeShiftStatus = detectTimeShift(last_timestamp, current_timestamp)
if timeShiftStatus then
if timeShiftStatus == 1 then -- winter->summer
skip = 6 -- skip 1 hour empty data
offset = offset - 3600
elseif timeShiftStatus == 2 then -- summer->winter
offset = offset + 3600
end
end
-- Add to new table only records from specified range
if current_timestamp >= starttime and current_timestamp <= endtime then
if timestampType == 'unixepoch' then data[start] = {current_timestamp, v}
else data[start] = {os.date('%Y.%m.%d %H:%M:%S', current_timestamp), v} end
start = start+1
end
k = k + 1 + skip
skip = 0
end
if mode == 'csv' then
-- Prepare .csv file
for k,v in ipairs(data) do
data[k] = table.concat(data[k], ",")
end
csv = "timestamp, value\r\n" .. table.concat(data, "\r\n")
return name, csv, resolution
elseif mode == 'table' then
return name, data, resolution
end
else
alert('There is no trend with such a name')
end
end
Function: trend_export(name, dates, mode, timestampType)
Function parameters:
name - trend name(must be the same as in DB)
dates - a table with: year, month, day, hour or a string("now", "yesterday","week_ago", "month_ago", "year_ago")
mode - 'table' for lua table and 'csv' for e.g. sending mail and using it after in Excel
timestampType - 'unixepoch' for unix timestamp or false for using local human readable timestamp like '2017.03.26 07:20:00'
Function returns:
name - name of trends
data - csv or Lua table based on mode parameter
resolution - trend resolution in seconds e.g. 300 means 300/60 = 5 minutes
Example of using:
Code:
require('user.trends_pro')
-- Export data
name = 'Kitchen_Temperature'
dates = {}
dates['start'] = { year=2016, month=4, day=5, hour=0}
dates['end'] = "now"
-- Send an email with data
attachement = { {filename=name .. '.csv', filedata=csv, mimetype='text/csv'} }
mailattach('someone@example.com', 'Report ' .. name, 'CSV file attached', attachement)
-- Calculate maximum value in specified period and log it
name, data = trend_export(name, dates, 'table')
minValue, maxValue = -50, 100
currentMax = nil
occurrences = {}
for k,v in ipairs(data) do
curValue = v[2]
if not curMax then
curMax = curValue
table.insert(occurrences, v)
else
if curValue > minValue and curValue > curMax and curValue < maxValue then
curMax = curValue
occurrences = {}
table.insert(occurrences, v)
elseif curValue == currentMax then
table.insert(occurrences, v)
end
end
end
max = curMax
if occurrences == 0 then log('There was no occurrences. Probably there was no data in table.')
else
message = 'Maximum value of ' .. name .. ' equals ' .. max .. ' and there was ' .. #occurrences .. ' occurrence'
if #occurrences > 1 then message = message .. 's.' else message = message .. '.' end
log(message, occurrences)
end
After export it is possible to import .csv file to e.g. program DB Browser for SQLite and then it is possible to use freely SQL commands to analyse this data for find e.g.:
- how many days in year was enough sunny(temp>20 and brightness>70klux) and in which month was the best for holiday?
- what would be the best angle for PV based on the last year?
- when there was no internet in house?
- how many times current temperature was very different from the setpoint and what was the reason?
- how many times in the last year there was some people in the house?
- ~~how many peoples was in the house in the las year daily based on doors(door open/2) or sensors(2 presence sensor in the hallway)?
and the other
I've updated above library and now it can correct the data after timeshift and also it gives a possibility to select a type of timestamp: unixepoch or more human readable
But unfortunatey time stamp is not human readable.
I've updated above library a few times yesterday so maybe you has not last version and please check also last version of examples. Change return values was one of the last change. Now I'm thinking about add also some filter function which can be created by user e.g. check if value is from Monday and if then find min value from all Mondays from the specified period.
Yes, because you've specified 'unixepoch' Delete it and you will see human readable format.
if (t0_isdst ~= t1_isdst) then
if (t1_isdst) then
-- change to summertime
return 1
else
-- change to wintertime
return 2
end
else
return false
end
end
-- Convert word "now" in "start" to data table
if type(dates['start']) == "string" then
if dates['start'] == "now" then dates['start'] = os.date("*t", os.time())
elseif dates['start'] == "yesterday" then dates['start'] = os.date("*t", os.time()-24*3600)
elseif dates['start'] == "week_ago" then dates['start'] = os.date("*t", os.time()-7*24*3600)
elseif dates['start'] == "month_ago" then dates['start'] = os.date("*t", os.time()-30*24*3600)
elseif dates['start'] == "year_ago" then dates['start'] = os.date("*t", os.time()-365*24*3600)
end
end
-- Convert word "now" in "end" to data table
if type(dates['end']) == "string" then
if dates['end'] == "now" then dates['end'] = os.date("*t", os.time())
elseif dates['end'] == "yesterday" then dates['end'] = os.date("*t", os.time()-24*3600)
elseif dates['end'] == "week_ago" then dates['end'] = os.date("*t", os.time()-7*24*3600)
elseif dates['end'] == "month_ago" then dates['end'] = os.date("*t", os.time()-30*24*3600)
elseif dates['end'] == "year_ago" then dates['end'] = os.date("*t", os.time()-365*24*3600)
end
end
-- Start and end in unix time
starttime = os.time(dates['start'])
endtime = os.time(dates['end'])
-- Invert "start" and "end" when "end" is smaller than "start"
if starttime > endtime then
_ = dates['start']
dates['start'] = dates['end']
dates['end'] = _
end
-- Read trend resolution from DB
resolution = db:getlist("SELECT resolution*60 FROM trends WHERE name='" .. name .. "'")[1]
-- Prepare a table with the data which include the whole data from specified range
if resolution then
-- Expand a range with a one more day if there is some data in the last day
if (os.date("%H", endtime)*3600 + os.date("%M", endtime)*60) >= resolution then
dates['end'].day = dates['end'].day + 1
raw_data = trends.fetch(name, dates, resolution)
else
raw_data = trends.fetch(name, dates, resolution)
end
start = 1
data = {}
start_timestamp = os.time(dates['start']) + resolution
-- Cut the data and prepare a table with the data only from specified range
offset = 0
skip = 0
k = 1
while k <= #raw_data do
v = raw_data[k]
if k == 1 then last_timestamp = start_timestamp else last_timestamp = current_timestamp end
current_timestamp = start_timestamp + (k-1) * resolution + offset
timeShiftStatus = detectTimeShift(last_timestamp, current_timestamp)
if timeShiftStatus then
if timeShiftStatus == 1 then -- winter->summer
skip = 6 -- skip 1 hour empty data
offset = offset - 3600
elseif timeShiftStatus == 2 then -- summer->winter
offset = offset + 3600
end
end
-- Add to new table only records from specified range
if current_timestamp >= starttime and current_timestamp <= endtime then
if timestampType == 'unixepoch' then data[start] = {current_timestamp, v}
else data[start] = {os.date('%Y.%m.%d %H:%M:%S', current_timestamp), v} end
start = start+1
end
k = k + 1 + skip
skip = 0
end
if mode == 'csv' then
-- Prepare .csv file
for k,v in ipairs(data) do
data[k] = table.concat(data[k], ",")
end
csv = "timestamp, value\r\n" .. table.concat(data, "\r\n")
return name, csv
elseif mode == 'table' then
return name, data
end
else
alert('There is no trend with such a name')
end
And how you are using it? Unfortunately demo LM from openrb.com is currently unavailable, so I cannot show you this on real LM.
Sometimes there are issues with reloading library so please clear library, clear and disable script and after all of these tasks try again use this library and script because it works for sure also with this human readable timestamp