Thank you Erwin,
I've prepared something also at this moment but now without converting to other output resolution.
This is a function for trend_export(can be added to user.library):
Function:
trend_export(name, dates, mode, timestampType)
Function parameters:
name - trend name(must be the same as in DB)
dates - a table with: year, month, day, hour or a string("now", "yesterday","week_ago", "month_ago", "year_ago")
mode - 'table' for lua table and 'csv' for e.g. sending mail and using it after in Excel
timestampType - 'unixepoch' for unix timestamp or false for using local human readable timestamp like '2017.03.26 07:20:00'
Function returns:
name - name of trends
data - csv or Lua table based on mode parameter
resolution - trend resolution in seconds e.g. 300 means 300/60 = 5 minutes
Example of using:
After export it is possible to import .csv file to e.g. program DB Browser for SQLite and then it is possible to use freely SQL commands to analyse this data for find e.g.:
- how many days in year was enough sunny(temp>20 and brightness>70klux) and in which month was the best for holiday?
- what would be the best angle for PV based on the last year?
- when there was no internet in house?
- how many times current temperature was very different from the setpoint and what was the reason?
- how many times in the last year there was some people in the house?
- ~~how many peoples was in the house in the las year daily based on doors(door open/2) or sensors(2 presence sensor in the hallway)?
and the other
I've prepared something also at this moment but now without converting to other output resolution.
This is a function for trend_export(can be added to user.library):
Code:
-- This function prepare export table and .csv file from defined range
function trend_export(name, dates, mode, timestampType)
require('trends')
-- detect timeShift
function detectTimeShift(t0, t1)
t0_isdst, t1_isdst = os.date('*t', t0).isdst, os.date('*t', t1).isdst
if (t0_isdst ~= t1_isdst) then
if (t1_isdst) then
-- change to summertime
return 1
else
-- change to wintertime
return 2
end
else
return false
end
end
-- Convert word "now" in "start" to data table
if type(dates['start']) == "string" then
if dates['start'] == "now" then dates['start'] = os.date("*t", os.time())
elseif dates['start'] == "yesterday" then dates['start'] = os.date("*t", os.time()-24*3600)
elseif dates['start'] == "week_ago" then dates['start'] = os.date("*t", os.time()-7*24*3600)
elseif dates['start'] == "month_ago" then dates['start'] = os.date("*t", os.time()-30*24*3600)
elseif dates['start'] == "year_ago" then dates['start'] = os.date("*t", os.time()-365*24*3600)
end
end
-- Convert word "now" in "end" to data table
if type(dates['end']) == "string" then
if dates['end'] == "now" then dates['end'] = os.date("*t", os.time())
elseif dates['end'] == "yesterday" then dates['end'] = os.date("*t", os.time()-24*3600)
elseif dates['end'] == "week_ago" then dates['end'] = os.date("*t", os.time()-7*24*3600)
elseif dates['end'] == "month_ago" then dates['end'] = os.date("*t", os.time()-30*24*3600)
elseif dates['end'] == "year_ago" then dates['end'] = os.date("*t", os.time()-365*24*3600)
end
end
-- Start and end in unix time
starttime = os.time(dates['start'])
endtime = os.time(dates['end'])
-- Invert "start" and "end" when "end" is smaller than "start"
if starttime > endtime then
_ = dates['start']
dates['start'] = dates['end']
dates['end'] = _
end
-- Read trend resolution from DB
resolution = db:getlist("SELECT resolution*60 FROM trends WHERE name='" .. name .. "'")[1]
-- Prepare a table with the data which include the whole data from specified range
if resolution then
-- Expand a range with a one more day if there is some data in the last day
if (os.date("%H", endtime)*3600 + os.date("%M", endtime)*60) >= resolution then
dates['end'].day = dates['end'].day + 1
raw_data = trends.fetch(name, dates, resolution)
else
raw_data = trends.fetch(name, dates, resolution)
end
start = 1
data = {}
start_timestamp = os.time(dates['start']) + resolution
-- Cut the data and prepare a table with the data only from specified range
offset = 0
skip = 0
k = 1
while k <= #raw_data do
v = raw_data[k]
if k == 1 then last_timestamp = start_timestamp else last_timestamp = current_timestamp end
current_timestamp = start_timestamp + (k-1) * resolution + offset
timeShiftStatus = detectTimeShift(last_timestamp, current_timestamp)
if timeShiftStatus then
if timeShiftStatus == 1 then -- winter->summer
skip = 6 -- skip 1 hour empty data
offset = offset - 3600
elseif timeShiftStatus == 2 then -- summer->winter
offset = offset + 3600
end
end
-- Add to new table only records from specified range
if current_timestamp >= starttime and current_timestamp <= endtime then
if timestampType == 'unixepoch' then data[start] = {current_timestamp, v}
else data[start] = {os.date('%Y.%m.%d %H:%M:%S', current_timestamp), v} end
start = start+1
end
k = k + 1 + skip
skip = 0
end
if mode == 'csv' then
-- Prepare .csv file
for k,v in ipairs(data) do
data[k] = table.concat(data[k], ",")
end
csv = "timestamp, value\r\n" .. table.concat(data, "\r\n")
return name, csv, resolution
elseif mode == 'table' then
return name, data, resolution
end
else
alert('There is no trend with such a name')
end
end
Function:
trend_export(name, dates, mode, timestampType)
Function parameters:
name - trend name(must be the same as in DB)
dates - a table with: year, month, day, hour or a string("now", "yesterday","week_ago", "month_ago", "year_ago")
mode - 'table' for lua table and 'csv' for e.g. sending mail and using it after in Excel
timestampType - 'unixepoch' for unix timestamp or false for using local human readable timestamp like '2017.03.26 07:20:00'
Function returns:
name - name of trends
data - csv or Lua table based on mode parameter
resolution - trend resolution in seconds e.g. 300 means 300/60 = 5 minutes
Example of using:
Code:
require('user.trends_pro')
-- Export data
name = 'Kitchen_Temperature'
dates = {}
dates['start'] = { year=2016, month=4, day=5, hour=0}
dates['end'] = "now"
name, csv = trend_export(name, dates, 'csv', 'unixepoch')
-- Send an email with data
attachement = { {filename=name .. '.csv', filedata=csv, mimetype='text/csv'} }
mailattach('someone@example.com', 'Report ' .. name, 'CSV file attached', attachement)
-- Calculate maximum value in specified period and log it
name, data = trend_export(name, dates, 'table')
minValue, maxValue = -50, 100
currentMax = nil
occurrences = {}
for k,v in ipairs(data) do
curValue = v[2]
if not curMax then
curMax = curValue
table.insert(occurrences, v)
else
if curValue > minValue and curValue > curMax and curValue < maxValue then
curMax = curValue
occurrences = {}
table.insert(occurrences, v)
elseif curValue == currentMax then
table.insert(occurrences, v)
end
end
end
max = curMax
if occurrences == 0 then log('There was no occurrences. Probably there was no data in table.')
else
message = 'Maximum value of ' .. name .. ' equals ' .. max .. ' and there was ' .. #occurrences .. ' occurrence'
if #occurrences > 1 then message = message .. 's.' else message = message .. '.' end
log(message, occurrences)
end
After export it is possible to import .csv file to e.g. program DB Browser for SQLite and then it is possible to use freely SQL commands to analyse this data for find e.g.:
- how many days in year was enough sunny(temp>20 and brightness>70klux) and in which month was the best for holiday?
- what would be the best angle for PV based on the last year?
- when there was no internet in house?
- how many times current temperature was very different from the setpoint and what was the reason?
- how many times in the last year there was some people in the house?
- ~~how many peoples was in the house in the las year daily based on doors(door open/2) or sensors(2 presence sensor in the hallway)?
and the other